THE LEECHES OF THE U. S. NATIONAL MUSEUM.

By J. Percy Moore, .
Instructor in Zoology, University of Pennsylvania.

Through the courtesy of the curators the collection of leeches contained in the U.S. National Musemn has been placed in my hands for study and determination. Though small, and much of it poorly preserved, the collection has proved an interesting one. None of the forms had previously been identified; several have been found to be undescribed, several others have been mentioned in the literature but once or twice, and many are here recorded from new locatities more or less remote from those previously known. The material has been drawn from various parts of the world, but it is to be regretted that our own A merican leeches are so poorly represented. Our fauna is a rich one, but is, perhaps, well known to but one person, who has as yet shared but little of his knowledge with the scientific public. We are still in nearly complete ignorance of the number and distribution of the species, and many interesting morphological questions remain to be elucidated. But one attempt has been made to systematize our knowledge-that of Prof. A. E. Verrill twenty-five years ago-and that upon very inadequate material from comparatively few localities. It is to be hoped that a greater interest will be taken in making well-preserved collections, and that our National Museum will soon have gathered together a complete series, not alone of leeches, but of annelids generally and other worms as well.

This is perhaps not the most suitable occasion to enter upon a discussion of any of the broader or more theoretical problems of morphology upon which the collection throws light. There is, however, one matter of especial interest to the systematic student to which some reference may profitably be made. I refer to the annulation of the somite. My observations ou this subject accord perfectly with the views expressed by Whitman (5 and 6) and later by Lang (4) and Blanchard for the Glossiphonidre, Hirudinidæ, and Herpobdellidæ, and I am pleased to be able to extend them to the Ichthyobdellidr also, which has, I believe, not previously been done. Apathy (1), who has made the most important recent contributions to the external morphology of the latter family, takes a precisely opposite view to that of

Whitman. He regards the multi-annulate somite as primitive. The view here supported is that the primitive typical leech somite consisted of three annuli. These primary anmuli can readily be recognized in all families and most species of leeches which 1 have examined. When the primitive tri-anmulate character of the somite is lost this may take place by (a) reduction, which has occurred as a result of coalescence of the primary rings at the anterior and posterior ends of nearly all leeches and in the genital regions of some, or (b) by elabora. tion, which has taken place in the somites of the middle borly region, especially of the Gnathobdellidae, Herpobdellidse, and Ichthyobdelfidie. The increase in the number of anmuli by which this elaboration is expressed extermally seldom if ever occurs by the actual intercalation of new rings, but only by the growth and lesser or greater subdivisiou of the three primary rings. This subdivision seems to follow a regular law, which is that any number or all of the primary rings may hecome secondarily bi-annulate, the secondary annuli similarly biannulate and the tertiary again divided for the fourth time, and any one of these subdivisions may be in various degrees partial or complete, and may affect one or more annuli of any order. The theoretical completeness of the process is expressed in the following table, which also presents a system of nomenclature for the maximum possible number of annuli of each order, up to the fourth, of a complete somite, enabling the structure of a typical somite of any genus to be expressed by a simple formula.

Table of annulations.

I give a few illustrations of the application of the system. Protoclepsine and many other Glossiphonide have a simple tri-annulate somite $a 1+a 2+a 3$. Many of the larger species of Glossiphonia show a slight subdivision of the second and third primary annuli, which becomes strongly expressed in Hementaria, $a 1+a 2(b 3 b 4)+a 3(b 5 b 6)$.

In the Hirudinida generally this tendency is complete, and the five annuli resulting are practically equivalent so far as size, etc., is concerned, $a 1+b 3+b 4+b \tilde{5}+b 6$ or $a 1+b 3-6$. Trachellobdella has all three of the primary amuli subdivided, thas: $b 1+b 2+b, 3+b++6.5+$ $b 6$ or more simply $b 1-6$. But in some of the species the divisions are incomplete, while in others those of the third order lave set in, facts which may be expressed by the use of brackets, as shown above for Ifementaria. In Dine the thirl actual (fourth secondary) annulus is widened and distinctly bi-annulate, expressible thus: $" 1+b, 3+b 4$ (ci $c 5)+b 5+b 6$. The greatest complexity is found among the Ichthyobdellide, of which Cystobranchus has the six secondary ammali, the third or sometimes the fourth being subrlivided. $\quad h 1+b 2+c \tilde{5}+r i+b 4+$ $b 5+b 6$ or $b 1-2+c \overline{5}-6+b t-6$. Piscicola varies somewhat, but the most frerpuent arrangement is that in which the full number of anmuli of the third orler is developed, and two of these, namely, co and $c 8$, are divided into ammil of the fourth order, making in all fourteen annuli, expressed by the formula $c 1-4+d(9)+d 10+d i+c \bar{t}+d 15+d 16+c 9-12$. In some species the fourten ammuli become perfertly equivalent in size and the plan of their formation obscure. No cases are known in which the whole twenty-four of the possible annuli of the fourth order are developed, or in which annuli of the fifth order are more than very slightly indicated.

Partial or complete unions of adjacent annuli of neighboring somites frequently occur, aud possibly entire somites may be absorbed, or simulations of new ones formed in the prostomial region. All of these conditions can be expressen in the formula, which could also be adapterl to indicate whether any given condition has anisen by simplification or claboration. The desirability of some more exact method of defiming the amulation of the Ichthyobdellider must be obvious to anyone who has moted the great confusion which reigns in this group as to the number of ammli of each somite, and the scope of the genera. Different authors have each usually attended to but one of the several orders of division of the somite, and thas we have Piscicola (Ichithyob. aclla) described with seven, twelve, or fourteen rings, each of which expresses a part of the truth.

By combining the somite formula with the Roman numerals by which the individual somites are indicated, we can describe any annulus desired with the greatest precision. As to the order of the claboration of the annuli in the Iehthyobdellide I have little light, except that the process begins in the middle primary annulus, and there also proceeds the farthest. There are good physiological and mechanical reasons for this; but I hope soon to lave sufficient data for a fuller discussion of the external morphology of this family. This preliminary account is presented here in the hope that students of the Hirndinea will find this scheme of sufficient value to test and perfect it. The systematic portion of the paper follows.

Proc. N. M. vol. xxi-35

Family GLOSSIPHONIDE.

PROTOCLEPSINE, new genus.

This genus exhibits primitive external characters in the retention of the full number (3) of annuli in all of the anterior somites, and in the elevation of the eyes upon papillie which stand in serial relation to the dorsal median segmental papillie of the succeeding somites. The sexual pores occupy the usual positions in somites X and XI.

The type species has three pairs of eyes sitnated on somites I, II, and III; and the posterior somites XXII to XXVI are reduced.

1. PROTOCLEPSINE SEXOCULATA, new species.
(Plate NL, fig. 1.)
Unfortmately there is but a single much contracted specimen of this interesting species. The prostomium is curled ventralward and the specimen is probably immature, so that the following measurements have a relative value only:

In its contracted condition the body is truncated at both ends, the prostomium being curled under at the anterior end (corrected in the drawing, fig. 1), and the acetabulum drawn closely up at the posterior end. Consequently the body appears almost quadrate, with its greatest width far back. It is strongly convex above and slightly concave below. The acetabulum is large and circular, with thickened margins. The anterior sucker is wide, with thickened crenulated margins, formed posteriorly by amulus 5 ; its interior and the mouth opening are hidden by the infolded prostomium. A deen median and three pairs of small lateral sulci divide the fiee margin of the prostomium into eight lobes, of which the four middle ones bear as many small papille. Dorsally it consists of a larger anterior and a smaller posterior annulus.

The somites I to XXI, inclusive, are complete, each consisting of three annuli; XXII and XXIII are biannulate; XXIV and XXV biannulate at the margins and undivided mesially; and XXVI consists of a single annulus. On each side of the middle line are three series of dorsal and four series of ventral papillir, situated on the firstanuulus of each somite on which alone papilla are evident. Of the dorsal series the innermost are widely separated, leaving a broad median area; the outermost are supra-marginal, and the remaining series halfway between these. All of the papillie are smooth and rather inconspicuous. On the first, fourth and seventh rings behind the prostomium
the papillie of the innermost dorsal series are transformed into deeply pigmented eyes, but still retain their character as papilla, being quite as elevated as the succeeding members of the series, with which they continue in perfect serial relation of position. Were any further evidence required to demonstrate Whitman's view of the homology of the eyes and segmental papille of leeches, this species would supply it. Annuli one and four lack the marginal but retain the intermediate papille. The former begin on annulus seven and continue to somite NXT. The intermediate series ceases at somite XXIII, while the innermost continues to the post-anal annulus.

The ventral papillæ begin on annulus seven, which is united with six. They are a marginal, a mesial ventral, and two intermediate on each side. The most mesial pair are widely separated and about opposite to the mesial dorsal series. All are small, and in this specimen can be detected with certainty on only a portion of the somites.

The individual described is probably immature, as the genital pores, although not difficult to detect, are very small, and their lips not swollen or glandular. The male pore is situated between annuli twentynine and thirty and the female between thirty-one and thirty-two. The color is probably much changed in preservation, being a nearly uniform bronze-brown. The eyes are black. Nothing is known of the internal anatomy.

Type.-No. 43 0, U.S.N.M. Bering Island, Commander Islands, Siberia. Leonhard Stejneger, August 5, 1882, No. 1405. One specimeu.

GLOSSIPHONIA Johnson.

2. GLOSSIPHONIA MOLLISSIMA.

(Plate XL, fig. 2.)
Clepsine mollissima Grube.
This species was described by Grube (3) from specimens collected at Lake Baikal, Siberia. The following notes will serve to supplement Grube's description. The first pair of eyes are very small, deeply set, and sometimes united to the second pair. They appear to be undergoing degeneration and absorption. The annulation of the first four somites is shown in the following table:

Annulation of somites of Glossiphonia mollissima.

Somite.	Annuli.	Organ.
I. II. III IV.....	Prostomium. ```1) M............... \\ 2) partly united. 3) 4) united. \(\left.\begin{array}{l}5 \\ 6\end{array}\right\}\) united. 7 8```	First pair of eyes. Second pair of eyes. Third pair ol eyes.

The prostominm consists of a single partial ring. The united third and fourth rings form the posterior margin of the anterior sucker. Somites III to XXII are complete, XXIII cousists of annuli sixty-three and sixty-four, XXIV of sixty-five, which is double at the margins, XXV of sixty-six and XXVI of sixty-seven, behind which is the anus. The male pore is placed at $\mathcal{N} a \frac{2}{3}$, or between the anmuli twenty-five and twenty-six ; the female at XIat $\frac{1}{2}$, or between twenty-seven and twentyeight.
Character is given to the papillation by the great development of the dorsal median series, the papillæ of which are very large, and in some specimens the only ones distinctly developed. They become conspicuous on annulus fifteen, and are found on the first annulus of every complete somite thereafter, and on the annuli sixty-three, sixtyfive, sisty-six, and sixty-seven. In the best preserved material they may be traced as far forward as annulus six. The mates are scparated at the middle line by about one-fourth of the width of the body. The dorsal inner-lateral papille are also well marked on most specimens, and are found on the eye-bearing aunuli, as well as on all those bearing the dorsal median ones. The outer lateral papille have become reduced to almost total suppression and were unnoticed by Grube. Very minute members of this series may usually be found on the eye-bearing and several succeeding papilliferous annuli. Besides the serial papillie, very minute variable ones are found on the dorsum of all of the annuli. There are 10 or 12 small papille on the ventral surface of the first ring of each somite.
On the accompanying label Dr. Stejneger gives the following description of the colors of this species during life:

Olive green, margins more brownish, two scries of large whitish knobs along the back, and several smaller and less conspicuous spots between these and the margins. Along the back a regular system of narrow brownish longitulinal stripes.

This species closely resembles the Clepsine elegans of Verrill, from which it may be distinguished by the much larger dorsal median papille.
No. 4259, U.S.N.M. Bering Island, Commander Islands, Leonhard Stejneger. 18:2-83. Twenty-two specimens.

3. GLOSSIPHONIA PARASITICA.

Hirudo parasitica Say. Clepsine ornata Veriill (in part).
I have not yet acquired sufficient material to satisfy myself of the status of Verrill's species of Clepsine; but it is certain that both C. ornata and C. papillate are composite and in part synonymous. The types should be again studied and compared. I think that the forms here included can safely be regarded as cospecific with those forming the basis of Verrill's original description of Clepsine ornata, and their identity with Say's species was established by the examination of the supposed types in the collection of the Philadelphia Academy of

Natural Sciences. The following examples are included in the U. S. National Museum collection.

No. 502г, U.S.N.M. Vicinity of Fort Huachuca, Arizona. Dr. T. E. Wilcox, U. S. A. Five specimens.

No. 4025, U.S.N.M. Currant River, Shannon County, Missouri. R. Ellsworth. One specimen.

No. 5026, U.S.N.M. Pine Ridge Agency, South Dakota. Dr. Leonhard Stejueger, 1894. One specimen.

No. 823, U.S.N.M. North Red River, British America. R. Kennicott. One specimen.

No. 4694, U.S.N.M. Wheatland, Indiana. On Chelyがa serpentaria. Fourteen specimens.

No. 4602 , U.S.N.M. Keel-Foot Lake, Obion Connty, Temnessee (from a small creek emptying into lake near Idlewild Hotel), May 30, 1882. E. Palmer. One specimen, very badly dried up and shrunken, but apparently a large example of this species.

No. 5027, U.S.N.M., 50 miles from Bluefields, Nicaragua. C. W. Richmond. On turtle. Five specimens.

4. GLOSSIPHONIA LINEATA.

Clepsine papillata Verrill rar. lineata.
In many respects this species resembles G. triserialis E. Blanchard, bat differs from this and resembles G. bridyei O. F. Miiller in the position of the genital pores, which are separated by but one ammulus. The external male orifice is situated at $\frac{\mathrm{x}}{\mathrm{x} 1}$, $\left(\frac{2}{2} \frac{4}{2}\right)$, the female at XI a_{2}, $\left(\frac{25}{2}\right)$, the latter being the usual position. The white patches which flank the black papille appear to be more conspicuously developed in the Mexican specimens, making this a very beautiful species.

No. 4101, U.S.N.M. D'eau douce de la Canada de Marfil, Mexico. Prof. A. Dugès, February 8, 1882. Nineteen adult and numerous young specimens.

5. GLOSSIPHONIA STAGNALIS.

> Mirudo stagnalis Linneus.
> Clepsine modesta Verrill.

This species is very common and widely distributed over the United States. No characters have been found which serve to distinguish it from the well-known European form.

No.1038, U.S.N.M. Woods Hole, Massachusetts, September 16, 1883. William Nye, jr.; fresh-water pouds. Six specimens.

No. S08, U.S.N.M. Woods Hole, Massachusetts, September $24,1883$. William Nye, jr.; fresh-water pond. Many specimens.

PLACOBDELLA R. Blanchard.

6. PLACOBDELLA MEXICANA, new species.
(Plate XLL, fig. 3.)
This species is close to Placobdella plana (Whitman) R. Blanchard, but the amulation differs in several respects. The body is broad and depressed, and rather ovoid in outline. The largest specimen measures 14.7 mm . in length and 6 mm . in breadth at the widest part. The acetabulum is small and weak, and about 2.5 mm . in dianeter.

The prostomium is undivided. It is followed by a rather wide ring, which bears the single pair of eyes on its posterior part, and the first pair of dorso-imer-lateral papilla on its anterior part. A plain narrow ring follows, then a broad double one bearing the second pair of dorso-inner-lateral papilles on its anterior half. A narrow ring completes with this double one somite III. Somite IV is in one specimen similarly constituted of a broad double ring and a narrow one; in the others it is eonstructed like the following somites of three rings, the first of which bears papille. Somite XXII is the last complete one; XXIII has two ammuli, XXIV a single annulus, double at the margin, and XXV and XXVI each a single papillate amnulus. The male pore is sitnated between the twenty-fourth and twenty-fifth, the female pore between the twenty-sixth and twenty-seventh, and the anus between the sixty sixth and sixty-seventh annuli.

The dorso-median and dorso-inner-lateral papille are large and eonspicuous, but low, sinootl, and rounded. The former begin on annulus eight (somite V) and continue with the latter to somite XXVI. The outer lateral are small; they begin on annulus eleven, the first of somite VI, and continne to annulus fifty-nine (somite XXII). The second anmulus also of each somite of the iniddle region of the borly bears six series of small papillat which lie mesiad to the corresponding ones of the first anmulus.

The color of the alcoholic specimens is a rich chocolate brown blotehed with lighter and darker brown, a branched figure of the latter color corresponding very closely with the branches of the intestine, and the pale spots in general with the papilla. A median white line appears at the auterior and posterior ends of the body. Beginning anteriorly in a triangular area which iucludes the eyes, it is more or less interrupted and broken at the first amulus of each somite to the seventh, where the band fades out. On the second anuulus of each of these somites the pale area runs out laterad in transverse bars, which on V reach nearly to the margins of the body. At the posterior end a similar narrow pale area extends forward from the anus to somite XXI. Marginal white spots occur metamerically on each somite. The posterior sucker is marked with alternating rays of brown and white, the latter being confined mainly to the marginal half.

Types.-Nr. ј028, U.S.N.M. Mexico; P. G. Jouy; No. 384. Three specimens.

HAMENTARIÁ De Filippi.

7. HÆMENTARIA OFFICINALIS De Filippi.

No. 1tis, U.S.N..M. (iuanajuato, Mexico; Prof. A. Dugis. Two specimens.

Family ICHTHYOBDELLIDAE.

TRACHELOBDELLA Diesing.
8. TRACHELOBDELLA VIVIDUS.
(Plate XIL, tig. 4.)
Cystobranchus ricidus Verastat.
This species bears a striking resemblance to a Ciystobranchus, but the annulation and the position of the sexnal pores are characteristically that recently attributed by Blanchaid to Truchelobilelia.

The two regions of the bouly are sharply distinguished. The anterior, which contains the first eleven somites, is somewhat sunken into and embraced by the first somite of the posterior region. Somites $1 \mathrm{X}, \mathrm{X}$, and $\mathrm{I} I$ are narrowed tos form the clitellum, in front of which the body is slightly expanded laterally. The anterior region inchades twenty distinct primary annuli posterior to the expanded "head," which latter, with the first five ammuli, constitute five somites. Somite VI is composed of three primary amuli, each of which is clearly biannulate. Somite VII is as large as the eight precerling annuli. Each of the primary amuli is divided into two and these again halved dorsally, so that twelve ammuli of the thind order may be connter on the dorsal side. The middle primary ammlus (" $_{2}$) of this somite is large, and its two seconlary annnli (1 , ${ }^{\prime}$) and t) have almost the value of the adjacent primary anmuli. Somite VII is similarly anmulated, but shorter. The somites IX, X, and XI are the clitellar somites and are each redıced to two primary amuli, which, with the exception of the last, are obscurely biannulate. The male pore is located on the anterior margin of somite X , or between this and the preceding annulus (16). On the ventral side annuli sixteen and seventeen are much enlarged and partly fused with fifteen and eighteen, respectively. The female pore is between the eighteenth and nineternth anmuli, laving the same relation to somite XI as the male pore has to X. The twenticth annulus is obscure, being united with and retracted within somite XI.

The posterior body region is broad and depressed, the transverse and vertical diameters being about as two to one. The constriction shown in the figure in the posterior third of the body is probably the result of an accident of preservation. The somites of this region are characterized by the six secondary annuli, those of the serond primary annulus ($\because \because 2$) being largest and on the dorsal side again divided into
 acter is lost in the posterior somites. Somite XXII is the last complete
one, behind which there are four additional obscurely bianmlate preaual annuli.

There are eleven pairs of well-developed lateral vesicles, which dimiuish in size each way from the sixth. Behind the eleventh pair are two pairs of rudimentary vesicles, indicated by opaque whitish lateral thickenings of the rings. The well-developed vesicles occupy the sides of $b 1$ and $b 2$ of their somites, except the first, which extends onto the last ring of somite XI. There are indications of annulation of the anterior sucker, but too obscure in this specimen to be described.
No. 242, U.S.N.M. Woods Hole, Massachusetts; V. N. Edwards. One specimen.

9. TRACHELOBDELLA MACULATA, new species.

> (Plate XL, fig. 6.)

The two body regions are well marked, the auterior slender and terete, the posterior broad, flattened, and raquet-shaped. The posterior sucker is small, little if at all directed ventralward, and is contracted to a slit-like opening.

There are thirteen pairs of respiratory vesicles, with a posterior rudimentary fourteenth. The anterior ones are indistinct and the largest (the ninth and tenth pairs) at the widest part of the body. This region is concave below and convex above from side to side. The anterior region is somewhat retracted within the posterior. The head (in the contracted specimen) is scarcely expanded, and its margin ouly slightly oblique. Its free margin tends to fold into four lobes, dorsal, ventral and two lateral.

As in most other species of the gemus, the annulation of the anterior region is irregular and difficult of interpretation. In this specimen the difficulty is increased owing to the integument being gathered up at several spots, as it were, into loose tufts, which disturb the arrangement of the ammli. Atter a carefnl study I have fixed on. the interpretation shown in the figure; but this needs to be confirmed by a study of more and better material. The clitellar region is sufficiently distinct. Six annulations are observable on the dorsal side of the head. Then follow two narrow rings in the constriction behind the head. Behind these follow, apparently, four complete somites (V to VIII) of three rings each, of which the tirst corresponds closely to the transverse bands of orange, the second and third to the ashy spots described below. The primary rings of somite VllI, as here provisioually ideutified, are subdivided into six secondary rings. The clitellum consists of the two primary partly orange colored rings of somite IX, the two primary (divided into four secondary) uncolored rings of somite X, and the similarly constituted somite XI , of which the last ring is united with the first of somite XII. The male pore is between the two secondary rings of annulus seventeen (the first of somite N), and the female pore
between the two secondary rings of ammulus nineteen (the first of somite XI). They are consequently separated by four small secondary annuli.

The somites of the posterior region are hexamerons, but the three primary annuli are easily recoguized; and the first and second of each somite, except XII, are undivided at the margins, where they are occupied by the paired respiratory vesicles. The vesicles, as in the species to be described next, extend over the first and second primary rings of each somite, though iu many cases the second is only partly occupied. Anteriorly the vesicles are collapsed and, except for their color, iudistinct, but posteriorly they become mach more prominent. Traces of a rudimentary fourteenth pair are found just anterior to the anus.
The color pattern of this species is interesting, and lias probably been derived from the breaking up and partial shitting of au annular pattern, which still persists to some extent in the auterior region. The general color above is a rich bright orange anteriorly, becoming faded to a pale yellow posteriorly, where it extends over much of the ventral surface also. The ventral surface of the anterior region, the greater part of the clitellum, and the head are of a pale ashy color, which spots the dorsal surface also. These ashy spots show a distinct tendency to become arranged in three longitudinal rows on the posterior region. They are mostly large and of irregular shapes, and very nearly correspond to the somites, but those of the middle series have shifted more or less toward the posterior eud and sometimes become confluent with neighboring blotches. All are edged by a very narrow border of reddish brown. A few similar irregular blotches are seen on the ventral surface. A small orange patch surrounds the male pore, and there is a similar one ou each side of the clitellum. On each side of the dorsal surface of the head is a large bright orange spot, leaving a median ashy area. In the figure the orange-colored parts are stippled, the ashy plain. The hexamerous structure of the posterior somites is represented only in XIX and XX, but the others are similar.

The single specimen measures:

Type.-No. 1314, U.S.N.M. Steamer Albatross. Locality unknown.
10. TRACHELOBDELLA RUGOSA, new species.
(Plate NL, fig. 5.)
The adult specimens of this species have the broad depressed form shown in the figure; a young individual is terete, with the vesicles appended to the sides of the body, and connected by a broad lateral cutaneons fold lodging the marginal sinus, by the metameric eularge-
ment of which the vascular sacs of the vesicles are formerl. The anterior region of the mature as well as of the young specimen is depressed, as in T. maculata, instead of terete, but the annulation, although obscured by cutaneous folds, appears to be the same. Exclusive of the three obscure annulations observable on the dorsum of the head there are trenty prevesicular annuli, of which the last is united with and retracted into the border oi somite XII.

Three complete anteclitellar somites are recognizable, owing to the presence on their first and second primary rings (namely, six and seven, nine and ten, and thirteen and fourteen) of peculiar cutancous projections just dorsal to their lateral margins. These are usually, lnt not invariably, united into a single pair on each somite, and are probably of the nature of rudimentary respiratory vesicles, or at least homodynamous structures. They lie somewhat dorsal to the plane of the functional vesicles.

The clitellum consists of two relatively large annuli, which are united together and bear a pair of cutaneous appendages in strictly marginal position, aud four narrow biannulate annuli, of which the first contains the male and the third the female orifice, thus agreeing with T. muculata. The last, and frequently the female ring also, is contracted within the following somite.

In the posterior region the integument, which must have been very loose in life, is mnch wrinkled and thrown into folds in contraction. This condition is less marked in the young example, in which the three primary annuli are readıly recognized, and the first and second are seen to be occupied by the remarkably large respiratory vesicles. Each of the primary ammli, of the adults is marked by four more or less distinetly marked transverse folds, which are divided by longitudinal furrows, into quadrangular tile-like and slightly raised areas, giving to the entire surfacera rugous tessellated appearance.

The respiratory vesicles are very large and conspicuous. They occupy the margins of the first and second primary annuli of each somite, and are connected by a cutaneous fold which is continuous along the margius of the body from the first to the twelfth or last pair of functional vesicles. Delicate irregular cutaneous wrinkles roughen the surface of both the vesicles and the marginal fold.

The posterior sucker is small, straight, and shallow; the anterior is closed in contraction to a vertical slit. No pigment remains in the bodies of any of the specimens, which have faded to a uniform clay color. A few brown pigment cells are arranged in a zone across the liead anterior to the annulations. There are no eyes.

The specimen figured has the following measurements:
Length complete... 23
Length of anterior region... 3.3
Width of clitellar region... 1.3
Width at first pair of vesicles ... 2.4
Width at ninth pair of vesicles... 5. 8

CYSTOBRANCHUS Diesing.
11. CYSTOBRANCHUS species?

No. 1594, U.S.N.M. Albatross station 2737. One specimen.
PISCICOLA Blainville.
The genus Piscicolu as here used is composite and requires subdivision, but no aderuate system has yet been proposed.
12. PISCICOLA GEOMETRA (Linnæus) Blainville.

Ňo. 237, U.S.N.M. Washington, District of Columbia, February 3, 1883. On (ierman carp (probably introducerl with these fish). Three specimens.

> 13. PISCICOLA SEXOCULATA.
rlatybdella sesoculatu Malm.
No. 4850, U.S.N.M. St. Panls Island, Bering Sea, June, 1890; William P'almer, from Sculpin. Five specimens.
14. PISCICOLA SCORPII.

Hirudo scorpii Fabriciús.
I'latybdella scorpii Malm.
I'iscirola multistriata Grecise.
No. 5029 , U.S.N.M. St. Pauls Island, Bering Sea; William Palmer, June, $18!0$, from Sculpin. Six sperimens.

No. 3944 , U.S.N.M. From Sculpin. One specimen.

15. PISCICOLA ZEBRA, new species.

This species has the slender, somewhat depressed, nearly linear form of P^{\prime}. geometra, but the posterior sucker is nearly cireular, and much less excentrically fixed, the anterior is smaller, the annulation shows some peculiarities, and the color is very different. In these specimens no respiratory vesicles are visible.

The anterior body region coutains twenty-one primary annuli, of which the first five are undivided, six to fifteen are distinctly broader and bianmulate, and the secondary rings often again biannulate, making four minor or tertiary rings to each primary annulus. Then begins the clitellar region with anmuli sixteen to eighteen narrower and less rlistinctly biamulate. The mate pore is in the posterior part of eighteen, and is bounded behind by a narrow fold. In contracted specimens this pore appears to be between eighteen and nineteen, owing to the snppression of the fold. Nineteen and twenty are similar, with the female pore belind the latter. Twenty-one and the following amuli are again distinctly and doubly biannulate. The posterior region begins with twenty-two.

The typical somites of the posterior region lave fonrteen amuli of the third aud fourth ordecs; the first and third primary amuli have
four each, the second six of these, as shown in the formula $c 1-4+d 9$ $-10+c 6+c 7+d 15-16+c 9-12$, and in some cases $d 13$ and 14 are developed. The annuli from fifty-seven to sixty-three (the last), inclusive, become simplified and are either undivided or faintly biannulate. The anus is between sixty-one and sixty-two.

I describe the color somewhat fully. The pattern is made up of irregular and often confluent blotches of brown on a yellowish ground, disposed differently in each specimen, but with a strong teudency to assume the annular or banded arrangement in all, except on the middle dorsal region, where the imer portions of the brown spots tend to become confluent into a pair of longitudinal stripes separated by a narrow but conspicuons median yellow stripe. The head is characteristically colored. The anterior two-thirds is yellowish, the posterior third marked by a conspicnous band of dark brown which in the three larger specimens extends two-thirds of the way around and on the smallest ouly one-half, leaving an uncolored ventral area. Dorsally, the dark band is interrupted by a narrow median line of bright yellow. Two pairs of dark brown eyes (separated by two-thirds of the wilth of the head) are situated at the angles of a parallelogram whose anterior and posterior sides correspond with the boundaries of the dark band. The anterior eyes are the larger. In some of the specimens the angles of the band, where broken dorsally, show an intensification of the pigment, which in one specimen bears a superficial resemblance to two additional pairs of eyes. In all of the specimens the dark ring is succeeded by a pale one which occupies the last cephalic and first and second postcephalic anmuli. Then follow eighteen more or less distiuctly marked irregular brown rings, of which four are anteclitellial, two clitellial, and the remainder postclitellial. Brown, more or less conspicuously, predominates to the twelfth ring, posterior to which the pale background increases. Several annuli in the neighborhood of the anns are always pale.

The four preclitellial rings show a strong tendency to fuse both dorsally and ventrally (more particularly the latter), sometimes the first three, sometimes the last three, or all four being thus united. The dorsal pigmentation then tends to split up into three yellow and two brown longitudinal lines, the latter being usually predominant. There is always a complete white ring just anterior to the clitellum. The clitellum is heavily pigmented above; and below, especially in the middle region, is almost devoid of color. The pattern is longitudinal. There is a rather broad median yellow stripe, a brown stripe (composed of two brown and one yellow lines), a very narrow yellow stripe, and then heavy brown blotches which cover the sides. A pale postclitellial ring is usually well defined and complete.

In the posterior region the blotches are large, well defined, irregular, and assymetrical, and not distinctly metameric in arrangement. A tendency is manifest on the ventral surface to break up into a median series of contluent blotches, on each side of which is a narrow, ill-
deñned, yellow, longitudinal line. Laterally the blotches are enlarged, dorsally they are narrower, but ou each side of the middle line are again drawn out and frequently become longitudinally confluent. Except in one specimen, the dorsal median.yellow line is scarcely interrupted. The twelfth brown ammulns is contimions across it in all four specimens, and the following ones show somewhat of a similar tendency. In two specimens the paired dorsal brown stripes may be traced almost without break for the animal's entire length, and it is in one of these that the median yellow stripe is interrupted at almost every brown band. The posterior sucker is heavily pigmented dorsally, less so or almost nupigmented ventrally. The marginal zone is pale, with about fourteen dark and irregular brown rays extending toward it and terminated by as many dark eye spots.

Length
Breadth 1.8
Length of anterior region 4.
Leugth of head (above) 5
Breadth of head 7
Diameter of acetabulum 1.6
Breadth of clitellum 1.5

Types.-No.4818, U.S.N.M. Arichat, Cape Breton, Nova Scotia; W. A. Stearns, 1890, from lips of lamper eel (Petromyzon marinus). Four specimeus.

16. PISCICOLA RECTANGULATA Levisen.

No. 4705, U.S.N.M. Alaska; Lient. Gr. M. Stoney; "fish parasite." Eiglit specimens.

17. PISCICOLA ANARRHICHæ.

Ichthyobdella anarrhicha Diesing.
Ichthyobdella anarrhiche van Beneden and Hesse.
Not Platybdella anarrhicher Mala.
Piscicola marina Leuckart, 1849.
Piscicola marina Grube.
Not P. marina Joinson.
No. 3958, U.S.N.M. Point Barrow, Alaska. U. S. Signal Service; J. Murdoch; gills of Lycorles. Twenty-six specimens.

18. PISCICOLA RAPAX.

Pontobdella rapax Verrill.
No. 5030, U.S.N.MI. Menemsha Bight, Vineyard Sound, Massachusetts. U. S. Fish Commission, 1883; Angust 28; exterior of Pleuronectes dentatus. Four specimens.

> PONTOBDELLA Leach.
19. PONTOBDELLA MURICATA (Linnæus) Moquin-Tandon.

No. 175, U.S.N.M. (no further data). One specimen.
No. 773, U.S.N.M. Cedar Keys, Florida; Henry Hemphill, December, 1883; from tongue of large shark. One specimen.

DINA R. Blanchard.
20. DINA ANOCULATA, new species.

Behind the genital region the body is much flattenerl, and both width and depth remain nearly eonstant from the clitellam nearly to the posterior sucker. Toward the posterior end it becomes slightly namower, and then the margins approach in a emve and pass into the broad acetabular perluncle. The margins of the body are rather obtnse, except on this posterior curve, where they are sharp and eompressed. The acetabulnm is small, less chan one-half the greatest width of the body, and faces ventrad. From the genital region the borly decreases in beadth and increases in relative depth toward the anterior end, which is quite terete. The month is very large, the opening in the individual measured being nearly, if not qnite, 1 millimeter. It is rombland, owing to the shortness of the prostominn, searely oblique. It is bounded by the prostominm, the first and second ammali.

The prostomiom eonsists of a larger lip and a narower posterior ineomplete ammlus. It presents a median lobe beneath, bonnded by a pair of sulei. There are in all one hundred and five amouli hehind the prostominm. The second one is complete and bounds the month posteriorly; its free margin is cremated. The first three somites consist of a single anmulus each, the fond hand fifthof threr anmuli each, while somites VI to XXII I are complete, consisting of five annuli each. In all of these the third or middle ammlns is enlarged, and shows evidences of subolivision into two tertiary anmali, thongh this character is less obvions than in I\%. quadristriata. The amulns anterior to the male pore, and oceasionally other ammali, show a similar biammataon. Somite XXIV has three annuli, and XXV and XXVI one or ineompletely two. The anns is situated between somites XXIV and XXV, or annuli one hundred and two and one linndred amd three.

The male pore lies between ammli thirty-four and thirty-five (somites X and $X I$. It is a conspicnons opening, survonuderl by a cirele of papillat, situated at the summit of a prominent, broadly conieal elevation which affects thee anmuli in fiont and as many behind. Anmulns thirty-fom is biamulate. The ineonspicuons female pore is situated between ammuli thirty-six and thirty-seven.

The ground color of alcoholie specimens is dull yellow, immaculate below and on the margins, hat largely replaced above by fonr longitudial stripes of grayish or dull black, of which the onter jair are submarginal, duller in color, and narower than the more distinet inner pair, which are well separated by a median strije of the ground color. Anterior to the elitellum the two stripes on cacli side becone confluent, but at the same time more dilnted with the gromud color, and finally boken and replaced by the widening middle stripe. This anterior expansion of the median stripe is cloar yellow and peenliar in the distinctness with which the longitudinal muscle fibers are there visible.

In many specimens, perhaps in a majority, the two dark stripes are partly or wholly confluent behind as well as in fiont of the clitellum. In such the lateral light stripes become merely a succession of more or less confluent small spots, or are entirely wanting. All degrees of transition between the two and four striped varities are found, the former giving the impression of light, the latter of dark, colored worms. The median and marginal light stripes are always well marked. Posterior sucker yellow. There are no pigmented eyes.
One of the larger specimens measures as follows:

Min.

Jength . 12.
(irestest brealth (abont the same fur the posterior half of tho body) 3.7

liscaulth at male pure . 3
Jepth at inale pore (including genitaI elevation) 2.
Jirt:allth at somitr: VI 8
Jepth at somite V J . 1.3
Jreathtı at interior sucker .

líratlth at atıus. 2.7
Brearlth of jorsterior surker . 1.5
No. 4×1, L.S.N.M. Mountains of San Diego Connty. Calibornia; C. R. Oroutt. Forty-three sperimens. Eleven of these were selected as types for the above description.

No. inn.31, lis.N.N. San Diego, Califomia; in fresh water; (.. R. Orcutt. One specimen.

```
21. DINA species?.
```

Niphtelis gnadristriala Vesims.l.
This is our most abundant eastern nephelid, and is very widely dis. tributed. It differs greatly from J). guadristriuta (irube, as determined by Blanchard, and seems to be withont a name. With us it varies in color with the greater or less development of the black dorsal stripes. The eyes are usually reduced, as stated by Verrill, to three pairs, owing to the nuion of the anterior two pairs.

No. $50: 32$, U.S.N.MI. Comrant River, Shamon County, Missouri; R. Ellsworth. One specimen.

22. DINA QUADRISTRIATA (Grube) Blanchard.

Nephelis quadristriala (; itUBE.
Nephelis mesicana よ. I)er;its.
No. 4941, U.S.N.M. Mexico; A. Dugies (No. 17(j). Twelve specimells.

No. 4809 , U.S.N.M. Mexien; A. Iuges. Four specimens.
HERPOBDELLA Blainville,
23. HERPOBDELLA PUNCTATA.

Nophelis punctata L」:sis.
No. Gffif, U.S.N.M. Yellowstone l'ark; Hayden's expedition, $18: 2$. Oue specimen.

Family HlluDINIDA:

HAEMOPIS SAVIGNY.

24. HAEMOPIS MARMORATIS.

Mirudo marmorala siss.
Not Nephelis marmorata Vermide.
Aulastomum lacustre Lividy.
Semiscolex grandix Verial.
This determination was made by the examination of what are probably Say's types, recently discovered in the collection of the P'hladelphia Academy. Say's species differs from H. sanguisugu Limmens chiefly in the constitution of somite VI, which in the latter species has, according to Whitman's figure (7), the three annuli of equal size and withont indication of subdivision. H. murmoruts, on the other hand, has the second and third annuli (twelve and thirteen of the entire series) much wider than the first, and each completely divided into two by a distinct suleus. The genital pores vary slightly in position, as indicated by the conflicting descriptions of Leidy and Verrill. The male pore is usually situated at the anterior border of annulus thirty-one and the female in thirty-six.

No. 5033, U.S.N.M. Yellowstone Park; C. Hart Merrian; Mayden's expedition, 1872. Eleven specinens.

No. 670, U.S.N.M. Havre de Grace; Milner, -1877. Three specimens. This is var. trigris Verrill.

No. 5034, U.S.N.M. Marsh, Leavenworth Connty, Kansas; Orsen Pattee. One specimen.

No. 4498 , U.S.N.M. Bristol Bay, Alaska; O. I. McRay, September 27,1853 . One specimen.
25. HAEMOPIS LATERALIS.

Hirudo Tateralis SAY.
Semiscolex tervestris Forbes.
The type of Say's species was recently rliscovered in the collection of the Philadelphia Academy.

The sixth somite of H. lateralis consists of five ammali the sextal pores are conserguently two anmuli further back than in II. murmorut is. Say's specimens were all aquatic, Forbes's all terrestrial.

No. 4102 , U.S.N.M. Olney, Illinois; July, 1885; J. and C. Walker. One specimen.

No. 625, U.S.N.M. Keelfoot Lake (small ereek), near Jdewild Hotel, Obion County, 'Tennessee; Ed. P'almer; 1882. One specimen.

> LIMNOBDELLA R. Blanchard.

26. LIMNOBDELLA MEXICANA R. Blanchard.

No. 202, U.S.N.M. Quanajuata, Mexico; Prof. A. Dugìs. Three specimeus.

MACROBDELLA Verrill.

Not Macrobdella Pulileri.
Verrill's use of Mucrobdella seems to lave priority, his paper having been published in February, 1872, while Philipin's was not published until October of that year.

27. MACROBDELLA DECORA (Say) Verrill.

Hirudo decora Say.

Hirudo decora lieny.
No. 4599, U.S.N.M. Wytheville, Virginia; Col. M. MeDonald, IT. S. Fish Commission. Two specimens.

No. 4503, U.S.N.M. Fulton Lakes, Adirondacks; Fred. Mather, July 2, 1882. Thirteen specimens.

PHILOBDELLA Verrill.

Verrill established I'hilobdella ats a subgenus of Macrobdella, thongh he inclined to raise it to the rank of a full gemus, which is modoubtedly its proper systematic value. The most remarkable character of the genus is that the ducts of both male and female organs open externally within the limits of somite XI. The sexual adluesive organs are arranged aromud these pores.

28. PHILOBDELLA FLORIDANA Verrill.

The chief points in the ammation of this species are shown in the following table:

Antulation of I'hilobdella floritant.

Unfortunately no material is available for a study of the internal reproductive organs. The exterual arrangement is as follows: The median region of annuli thirty-four and thirty-five is pushed in to form a deep pit, which at its mouth is abont 2 mm . acioss. It inclines eephalad and narrows toward the fundus. In one specimen it is at least 3.5 mm . deep. In the front wall, which corresponds to the inturued part of ammlus thirty-four, is an orifice which appears to be the mate pore. This is located more than a millimeter from the mouth of the pit and between a pair of glandular folds or papilla, which, like those described below, has each a pore at its summit. Five additional adhesive organs are related to the male pore. A pair is located on the posterior margin of thirty-three, close to the median line. The papille are low and wide, and the pores large, oblique, and crescentic. A second pair is placed at the sides of the pit, just within its mouth and close to the posterior wall. A fifth and mpaired organ is placed on the posterior wall of the pit at a higher (more dorsal) level than the pair.

Behind the male pit a large, conical, sugar-loaf-shaped papilla rises from annuli thirty-six, thirty-seven and thirty-eight. At its slightly pointed summit is the female pore, within the limits of the thirty-seventh annulus. The papille incline sliglitly toward the posterior end of the body. On each side of the female pore and rather toward the posterior face of the papilla is an adhesive organ which in copulation would meet one of the pair between which the male pore is situated. Three more, a pair at the base and a single median one higher up, are found on the anterior face of the papilla, and in copulation would attach to the three in the posterior region of the male pit. Another pair is located on annulus thirty-cight, just outside of the base of the papilla, and corresponds to the inale pair on annulus thirty-three. In addition to these there is a conspicuous pair farther out on thirty-eight, and on the posterior portion of thirty-nine (or on thirty-nine and forty of one specimen) a bilobed papilla with two pores on one side, and a linear trilobed one with three pores on the other side of the middle line, which have no visible counterpart in the male system. This last group alone probably correspouds to the similar organ of Macrobdella, the others being unrepresented in that genus.

All of these organs consist esscutially of more or less prominent papilla containing glandular sacs which open by apical pores.and whose cavities frequently contain liardened masses of mucus.

No. 4103 , U.S.N.M. New Orleans, Louisiana; Dr. R. W. Shufeldt (No. 593), 1883 , one specimen.

No. 4104 , U.S.N.M. New Orleans, Louisiaua; April, 1883; I)r. I. W. Shufeldt (No. 1140), one specimeu.

No. 791, U.S.N.M. New Orleans, Louisiana; April, 1853; Dr. R. W. Shufeldt (No. 1139), one specimeu.

